A closer look at mirrors and quotients of Calabi-Yau threefolds

GILBERTO BINI AND FILIPPO F. FAVALE

Abstract. Let X be the toric variety $(\mathbb{P}^1)^4$ associated with its four-dimensional polytope Δ . Denote by \tilde{X} the resolution of the singular Fano variety X^o associated with the dual polytope Δ^o . Generically, anticanonical sections Y of X and anticanonical sections \tilde{Y} of \tilde{X} are mirror partners in the sense of Batyrev. Our main result is the following: the Hodge-theoretic mirror of the quotient Z associated to a maximal admissible pair (Y, G) in X is not a quotient \tilde{Z} associated to an admissible pair in \tilde{X} . Nevertheless, it is possible to construct a mirror orbifold for Z by means of a quotient of a suitable \tilde{Y} . Its crepant resolution is a Calabi-Yau threefold with Hodge numbers (8, 4). Instead, if we start from a non-maximal admissible pair, in the same case, its mirror is the quotient associated to an admissible pair.

Mathematics Subject Classification (2010): 14J32 (primary); 14J33, 14M25 (secondary).